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Project Overview

The objective of this project is to design a reusable device for the new lunar lander module that
will dissipate the impact energy in such a way that it does not damage the vessel or occupants.

1. Problem Statement
The following statement was provided to the design team by the project sponsor:

“For the nation's first woman and next man to land on the moon in 2024, new
mechanical component designs are need for the human lander. The Apollo
class lander used crushable shock absorbers in their landing legs for simplicity
and because of it being a low mass option. For the next generation lander,
we plan to have the ability to "hop" or land multiple times with the same
landing legs. So we will need to come up with a new generation of shock
absorbers for these new manned lunar missions. We would like to work with
the senior mechanical design students to research, design, and analyze new
alternatives for landing leg shock absorbers to handle the rough dusty
conditions and extreme temperatures of the lunar surface and still perform as
desired. Then work together to create a scaled down version of the shock
absorbers to prototype and test. This will provide the Human Lander Program
additional understanding of the state of the art and potential new solutions.”

2. Project Scope
Early in the project we determined our scope based off the problem statement. After the first
semester, we refined the scope of the project based off the first semester of working on the
project.

A. Initial
A shock absorbing leg system compatible with lunar conditions and can be reused.

B. Refined
A reusable shock absorber, compatible with lunar conditions, that could be incorporated into
a larger leg system.

3. Customer Needs
The fundamental needs of this project have been interpreted as the design of a lightweight
product that is reusable in space and can repeatedly withstand initial impact velocity of 10ft/s.
We determined 12 interpreted needs based off our interviews with our sponsor and technical
advisors are NASA.

The product must be able to be used indefinitely, be able to make repeated trips to/from
gateway and the moon without returning to Earth in between trips. To minimize trips, it must
also require minimal maintenance in addition to being able to use the same tool for multiple
components. It must be lightweight yet able to support 25,000kg. The dynamic qualities of the
spring must not change or diminish after impact and must be able to handle an impact speed of
10 ft/s while landing at up to 10 degrees offset from the z-axis. Finally, the product would need



to have a shock absorber per leg, which each must be able to support the lander under Earth’s
gravity.

Functional Decomposition

We created a list of basic functions that the design must accomplish and then grouped the basic
functions into systems that accomplish a related function. We determined that our project has
three main systems: support, impact reduction, and reusability.

The design will ensure a safe landing on the moon through reusable shock

absorbers with the ability to absorb impact energy, withstand shock, and support the weight of
the human lander and its cargo. The design will be able to transform energy, dampen vibrations,
dissipate energy, and store energy allowing for the safest landing possible.

Targets and Metrics

We determined 11 total targets and metrics that correspond to the 11 functions. Each
function is achieved through the metric to achieve a target value. There are five critical
targets and metrics, given that there are five critical functions.

The first target is to absorb approximately 145 kJ of kinetic energy from impact into the
system, bringing the structure to rest. The design absorbs structural shock by remaining
elastically ductile while enduring less than a target of three g’s of impact acceleration. The
design uses materials and geometry that can support a target mass of approximately
25,000kg. Another target is that the design returns to its original state within 10 hours,
through dissipation of stored energy, which is the function the unlocking mechanism. To
indicate reusability, the design proves that it has returned 100% to its original state.
Sensors monitor the parameter values over time and notify the user once parameters
return to its initial value.

The remaining targets and metrics were a second priority. The design should limit
excessive rebound to less than 0.5m, have OkJ of final kinetic energy, should settle in two
seconds, dissipate all energy in 10 hours, and must have the capacity to store 145 kJ of
energy.



[I.  Solution Overview

This section gives an overview of the designs we considered, the design we chose to pursue, and the
design changes that were made during the project.

1. Design Alternatives
The design team generated 100 possible concepts. Concept selection tools were used to select
our best ideas. This section contains a brief description of the top design alternatives to give a
sense of why certain design decisions were made.

A. Spider Legs
The spider legs design concept involved the use of multi-segmented lander legs. Rotational
frictional dampers at the leg joints would dampen the rotation of the legs and springs would
be used to define a ‘normal’ position of the legs. A sketch of the concept is shown in Figure 1.

Spider Legs

/eﬂlf[(ﬂy /;/

A ﬂ[(//;ﬂ@/‘y

£ 0&/’5/0/(/}(;/ gﬂ/c/}(g«f

Not To Scale

Team 515 J Alt Design
Page 1/1 § Josh Blank

Figure 1: A sketch of the spider legs concept.

Pros

The design was purely mechanical, which was attractive because it would work in the
event of a power failure or other kind of landing emergency. The wide landing stance of
the space craft in the ‘normal’ position also suggested that it would be very stable and
capable of landing on less-than-ideal surfaces. The rotational mechanical dampers could
also be made dry, which would preclude any special equipment needed for fluid
damping.

Cons

The main drawback to the spider legs design was that each leg would require multiple
rotational friction dampers positioning springs. It was thought that the spider legs would
be much heavier than the selected design and was not seriously investigated.



B. Leaf Springs
The leaf springs concept involved the use of leaf springs, similar to the rear suspension in
heavy machinery and older style carriages. A sketch of this concept is shown in Figure 2.

Leaf Springs
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Figure 2: A sketch of the leaf springs concept.

i. Pros
This design was also purely mechanical. The leaf springs are self-damping through
friction. Leaf springs have also been used for thousands of years, which gave us a lot of
material to work with in designing them. They are also very simple and very robust.

ii. Cons
The major drawback to this design was the required geometry of the landing craft. If the
craft was assembled in space, it may be more feasible, but our rough calculations
showed no way to fit this concept into a rocket. The design was not investigated further.

C. Weighted Springs
The weighted spring design used a series of springs in conjunction with an actively controlled
weight to damp out the force of impact, like how noise cancelling headphones work. A very
rough sketch of this concept is shown in Figure 3



Weighted Springs
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Figure 3: A sketch of the weighted springs concept.

Pros
The most attractive aspect of this design is that if done properly there would be no force

of impact felt on the rest of the space craft.

Cons

The major drawbacks to this design were the excessive mass and it was not purely
mechanical. The design team also did not have a very good understanding of how to
make this concept work.



2. Selected Design: Locking Springs
This design centered around the idea of locking a spring at its maximum compression during
landing. The basic idea was that when a spring is at its maximum compression, all the impact
energy has been absorbed and if the spring is mechanically locked at that maximum
compression, then all the shock will have been absorbed. The spring could then be unlocked
later to release the stored energy, possibly in conjunction with liftoff to reduce the amount of
fuel needed to leave the lunar surface. A rough sketch and the original hand drawing is shown in
Figure 4.

Locking Springs
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D. Pros

This design bypassed the need to dissipate the force of impact by instead storing the impact
energy in the elastic deformation of the spring. This design would also be purely mechanical
during the landing phase. From our rough calculations the design appeared to have the least
amount of mass per leg compared to the other design alternatives.

ot nord /

2. .
Svreting) Pl

Not To Scale

Team 515
Page 1/1 |} Josh Blank

4
2

Figure 4: A sketch of the locking springs concept.

E. Cons
The design must use some kind of energy to unlock, making the design not purely
mechanical. The design also does not account for less-than-ideal landing scenarios.

3. Design Iterations
This section details the evolution of the design and explains why certain design decisions were
made.

A. Simple Lever with Solenoid Actuator
Our first design iteration employed a linear ratchet with a simple lever pawl arm, shown in
Figure 5. The principles of operation are as follows:



1) Upon impact, the linear ratchet would move into the main cylinder and compress the
main spring.

2) As the linear ratchet moved inward, the pawl arms would be pushed outward and rotate
about their pivot point.

3) When the main spring reached its maximum compression, the extension springs would
hold the pawls together and keep the linear ratchet locked in place.

4) When the spring was to be unlocked, the solenoids would be activated and pull the
ferromagnetic core towards the main cylinder. This would cause the pawls to rotate
about their pivot points and unlock the linear ratchet.

However, it was not geometrically possible to use extension springs to generate enough
force to keep the pawls shut.
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Figure 5: A sketch of the original locking springs design.



Figure 6: A CAD rendering of the first design iteration.

B. 4-Bar linkage
The next design iteration focused around using a 4-bar linkage to increase the mechanical
advantage of the extension springs, shown in Figure 7. This design focused around locking the
ratchet in place and the design was abandoned before an unlocking mechanism was
developed. The shear force developed at the pins required the use of extreme geometry that
was counterproductive to the goal of increasing mechanical advantage.
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Figure 7: A sketch of the vice grips concept.



C. Ratchet Screw
The next design focused around using the elastic properties of the pawl arms as the locking
mechanism; effectively turning the pawl arms into leaf springs. The ends of the pawl arms
would be rigidly attached to the upper end of the main cylinder, as shown in Figure 8. The
pawl arms would deflect in a similar manner to the first design iteration, but the geometry of
the arms would resist the rotational moment created by the compressed main spring. This
design also allowed the use more pawl arms to help distribute the load better, as shown in
Figure 9.
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Figure 8: A sketch of the ratcheting screw concept.

The ratchet of this design would have a helix profile, like a buttress thread except the angle
of the thread would be optimized for ratcheting. This screw profile would require the pawls
to be staggered, and have teeth angled to match the pitch of the thread, as shown in Figure
10. To simplify the complex geometry of the pawl teeth and increase strength it was decided
to use ‘half nut’ style pawl teeth. An internally threaded nut that matched the threading of
the ratchet screw would be divided radially into equal parts, one for each arm. The partial
nuts would then be attached to the pawl arms. This would allow for each pawl arm to be the
same length and increase the surface area of the mating teeth, as shown in Figure 11.

A high torque motor inside of the main cylinder could be used to slowly rotate the screw
outward after landing. The motor would be within a housing that protects the motor from
the full axial force of landing. A thrust bearing would be used to transmit the impact energy
from the ratchet screw to the motor housing, then the motor housing would transmit the
energy to the main spring. The motor housing would need to be keyed in such a way to keep
the motor body from rotating inside of the main cylinder. The motor housing would most
likely have the male key(s), while the main cylinder would have the female keyway(s). This
arrangement would be less likely to interfere with the main spring during operation.



Figure 9: A CAD rendering of the ratchet screw concept.

Since the unlocking operation no longer required the opening of the pawl arms, it was now
advantageous to back cut the load bearing face of the ratchet. In the first and second design
iterations, when the pawls disengaged from the linear ratchet to unlock, an excessive
frictional force would have been incurred if the load face of ratchet was back cut. Since the
pawls of the ratchet screw remain in place during unlocking, the increased frictional force
from back cutting helps ensure that the pawls remain engaged.

Since the unlocking operation is much slower in the ratchet screw design then in the previous
design iterations, the unlocking phase can no longer assist in liftoff. However, the screws may
be used to level the space craft after landing.



Figure 10: A CAD rendering of the ratchet screw concept. The staggered nature of the pawls and the pitch angle of the teeth are
observable.

Figure 11: A CAD rendering of the ratchet screw design with eighth nuts as pawl teeth.



4. Prototype Scaling

The prototypes for this project were dynamically scaled according to Dynamic similarity and
scaling for the design of dynamical legged robots (Miller & Clark), and the relevant scaling
factors are presented in Table 1: A tabulation of relevant scaling factors and their relationship to
each other.

Table 1: A tabulation of relevant scaling factors and their relationship to each other.

Parameter Scaling Factor | Relationship
Length oL oL

Mass Olm o

Stiffness Olk O Ol
Touch-Down Velocity oLy a|_1/2

The prototypes were scaled around a preformed spring. The prototype spring was chosen from
a catalogue and was selected because it had a similar scaling factor to the designed spring in
both the radial and axial directions. The overall length scaling factor was taken as the average
between the radial and axial scaling factors of the prototype spring. The stiffness scaling factor
was taken as the ratio between the designed spring and the prototype spring. From there, the
scaling factors for mass and velocity were found using the relationships listed in Table 1.

The scaling factors and various test parameters are listed in Table 2. The deflection was
calculated in two ways. The first way was the use of the spring energy equation, listed in the
table, using the scaled spring stiffness and scaled impact energy. The second was by applying
the length scaling factor to the expected real spring deflection. The fact that both calculated
deflections are the same proves that the dynamic scaling was performed properly.

Table 2: Various parameter values for the spring prototype.

Spring Prototype Calculations

Stiffness Scaler 5.530E-03 180.8
Length Scaler 0.280 3.567
Time Scaler 0.5294651 1.889
Force/Mass scaler 0.0015503 645.0
Mass 38.76 | kg | 85.45 | Ibs
Drop height 0.1659265 | m | 0.544 | ft
Impact Energy 63.088426 | J
Scaled speed 1.8042941 | m/s
Deflection calc

KE = 0.5*k*x"2 0.1852268 m | 0.608 | ft
Deflection from scale 0.1852268 | m | 0.608 | ft




5. General Timeline
Table 3 contains a tabulation of the major events that made up this project and when they
occurred.

Table 3: A rough timeline of our project

Month Event

September | Established contact with sponsor.

Defined project scope and determine customer needs.

Researched space’s extreme conditions to grasp or working environment.

October Performed a functional decomposition based on customer needs.

Began stating targets and defining metrics.

Brainstormed some general ideas.

November | Generated realistic possible designs.

Analytically selected best design.

Wrote a bill of materials for the design.

December | Generated a safety manual for low-risk operation of the design.

Started computations for the design.

Used CAD to make the design.

January 3D printed the design to scale.

Developed prototypes for testing.

Ordered parts and assembled prototypes.

February Tested Spring prototype.

Changed design to helical ratchet.

Restarted computations for the design.

March Used CAD to make and 3D print the design.

Tested scaled 3D print for functionality.

Started to machine helical ratchet parts.

April Test locking mechanism prototype

Finish website

Senior design day

lll.  Components
This section contains a list, brief description, and some of the considerations for each component of
our full design and the prototypes.

1. Full Scale Design
The full-scale design is for the shock absorber that we intended to be used on the lunar lander.
This is the design that we will give NASA at the end of this project.

A. Main Cylinder
The main cylinder is the anchor component of the entire design. It houses the main spring
and the unlocking motor, it receives the ratchet screw as the lander impacts the lunar
surface, and it supports the pawls. The end of the main cylinder that is connected to the rest




of the space craft is referred to as the top or upper part, and the end of the main cylinder
that is towards the footpad is referred to as the bottom or lower part.

The main stress points are located where the spring interfaces with the main cylinder, and
where the pawls connect to the main cylinder. The main cylinder is not susceptible to bucking
because compressive loads are not placed across it.

The inside of the main cylinder is designed to prevent the motor housing from rotating. The
main cylinder is designed with female keyways in the axial direction. The use of male keys
was considered unfavorable because the main spring may have rubbed against them and
posed a fabrication challenge.

End Cap
The end cap serves as the mounting component that the pawl arms are bolted to and gives
the main spring a surface to contact while being compressed.

The end cap is fit to the inside diameter of the main cylinder and has two rows of mounting
holes for the pawl arms to be bolted to.

Main Spring
The main spring absorbs the energy of impact and stores that energy in elastic deformation
until spring is unlocked.

The main spring was designed to absorb the entire impact force under the worst-case
scenario landing: on one leg at the maximum expected speed. The material of the spring
must withstand the force of impact in the extreme lunar environment. Most of the landing
craft is made from high strength aluminum alloy, which retains its material properties
through the entire expected temperature range, however the low modulus of elasticity of
aluminum precluded its use in spring applications. The use of carbon steels is made difficult
because of the ductile to brittle transition at low temperatures. 300 series stainless steels
were identified as potential materials for the main spring because of their extensive use in
the cryogenic industry. All calculations were made assuming that the spring was made of 304
stainless steel. The dimensions and some parameters of the spring are listed in Table 4.

Table 4: Designed Spring Parameters

Parameter Value | Units
Stiffness 665 kN/m
Stroke 66 cm

Wire Diameter (d) | 1.25 | in
Nominal Spring
Diameter (D) 5 in
Spring Length (L) | 72 in
Active Coils (Na) | 20 #




D. Ratchet Screw
The ratchet screw transmits the impact force from the footpad into the rest of the shock
absorber and prevents the main spring from rapidly expanding after impact. During impact,
the ratchet screw moves into the main cylinder and compresses the main spring. As the
ratchet screw moves inward, the angled face of the threads pushes against the angled
surface of the pawl teeth and deflects the pawls outward.

When the spring has reached its maximum compression the ratchet springs stops moving
inward. The main spring forces the ratchet screw outwards until the load bearing surface of
the pawl teeth engage with the load bearing teeth of the ratchet screw. At that point, the
ratchet screw becomes locked and prevents the main spring from expanding further.

The angle of the ratcheting threads is lower (30°) than a normal buttress thread (45°) to
direct more of the impact force outwards to better deflect the pawls. The load bearing face
of the threads is back cut to help lock the pawls into the ratchet screw.

The ratchet screw is susceptible to buckling since all the force will be applied though it. The
previous design iterations used a linear ratchet mounted in a circular I-beam, which greatly
resisted bucking. The ratchet screw is effectively a round column with diameter equal to the
minor diameter of the threads. All column calculations were done with this assumption.

The ratchet screw is susceptible to surface failure because of the ratcheting impacts of the
pawls and the unscrewing under load. The material that the ratchet screw is made of will
need to be very hard to resist failure. High strength steel alloys would work well, but weight
considerations make this an unattractive option. High grade aluminum alloys may be hard
enough to withstand surface failure, but some titanium alloys offer a compromise on both
weight and hardness.

Since wet lubrication is not an option, dry film lubricants must be used. Various dry lubricants
are available, and testing may need to be performed to select the best option. ETFE is a
polymer like Teflon, but is much more mechanically durable, heat resistant, and used in
cryogenic applications. Various molybdenum disulfide (MoS, / Molykote) lubricants exist for
aerospace applications and appears to be the most widely used lubricant in space.

E. Pawl Arms
The pawls arms prevent outward linear motion of the ratchet screw but allow the ratchet
screw to rotate outward. The pawl arms are attached near the top of the main cylinder. The
long length of the pawl arms ensures they will be easily deflected with minimal bending
stresses withing the beam of the pawl arms.

The pawl arms engage the ratchet screw with threaded teeth. The teeth of each pawl arm
make up a portion of a nut threaded with the same profile as the ratchet screw. This concept
is like a half-nut in a quick release vice except the nut is divided into eight pieces instead of
two. All teeth engage the ratchet thread when the spring is locked, but only the upper most
(closest to the pawl connection) thread of each pawl is involved in the ratcheting movement.
The other threads will be deflected up more than the first thread and will not actually
interact with the ratchet thread until the pawl returns to its fully down position.



The pawl arms are susceptible to surface failure just like the ratchet screw and must also be
made from a similarly hard material. The calculations for the pawl arms were done assuming
304 stainless steel since they act like leaf springs.

The pawl arms will share the same lubricant as the ratchet screw.

Eighth Nuts

The eighth nuts are eight equally sized partitions of a female threaded nut that matches the
helix profile of the ratchet screw. The eighth nuts allow for the ratcheting motion and hold
the ratchet screw in place when the spring is at its maximum compression. The use of eight
nuts instead of pawls with integrated teeth simplifies the geometry of the pawl arms,
removes the need to stagger the pawl arms, and provides more thread engagement per
pawl.

The eighth nuts are connected to the pawl arms via a dove tail and two mounting bolts.

The eighth nuts could be fabricated by first drilling and threading a hole into a large piece of
stock. The dovetails and mounting holes could then be machined into the nut. Finally, the nut
could be cut into the eight sections by use of water jet, laser, or mechanical saw. The threads
would most likely be partially damaged near the fringes and would need to be cleaned up.

Motor Housing

The motor housing allows the motor to be located within the main cylinder between the
ratchet screw and the main spring without subjecting the motor to the full axial impact force.
The motor housing also provides a radially secure mount for the motor when unscrewing the
ratchet screw.

The motor housing will slide axially in the main cylinder and transfer the impact energy from
the ratchet screw to the main spring. The housing will be radially fixed by male keys that fit
into female keyways in the main cylinder.

The motor housing must be made from a sufficiently strong material that will withstand the
force of impact and withstand the shear forces imposed by the keys onto the keyways when
the motor is operating. High grade aluminum alloys should work fine for this application.

The motor housing must be lubricated in two ways. The first is to lubricate the axial motion
of the motor housing into the main cylinder during impact; the motor housing should be
sufficiently lubricated to prevent binding from occurring if the impact force is not perfectly
centered on the axis. The second way is to lubricate the axial motion of the keys in the
keyways as the motor turns the ratchet screw. Although both situations may be lubricated in
the same manner, it is important to note the two distinct situations that require lubrication
because of how different the forces are applied. ETFE and MoS; are also good possible
contenders for lubricants for the motor housing.

Motor & Gear Box

The motor and gear box, referred to collectively as just the motor, are responsible for
unthreading the ratchet screw after impact to reset the shock absorber for its next landing.
The motor is located inside of the main cylinder to account for the variable position of the



ratchet screw, and to reduce the weight from a long motor shaft if the motor was located at
the top of the main cylinder.

The power cords for the motor are run down through the center of the main spring and are
held taut by a retractor. The power cords must be held taut to prevent them from being
caught in the spring or by the motor housing during impact. The motor and retractor are
outside of the scope of this project. The motor must be able to deliver 40 kNm of torque at
maximum spring compression.

|. Thrust Bearing
The thrust bearing allows the ratchet screw to transfer the impact to the motor housing and
allows the ratchet screw to rotate while the motor housing remains in radially fixed. The
thrust bearing is within the scope of this project but has not yet been designed. The drawing
that is included in Appendix B.1 should be taken as a rough draft. A ball bearing is expected
to work for this application since it will be a very low rotational speed application.

The thrust bearing will most likely need to be lubricated with dry film lubricant like MoS,
because treating all rubbing surfaces with a ETFE film would be difficult.

J.  Controls
To ensure safety of the user, there will be a sensor integrated into the design that measures
how extended/compressed the main spring is. If it is extended at all, a warning will be output
to the user. It will show the user when the system is ready to be used again. The sensor
design and integration are outside the scope of this project, but an infrared distance sensor
could be used to measure the distance between the motor housing and the end cap.

2. Spring Prototype
The spring prototype was used to measure the deflection of the prototype spring under a
dynamically scaled impact. Drawings for the spring prototype are in Appendix B.2.

A. Base Plate
The base plate provided a base for the spring pipe, stabilized the entire prototype during
testing, and provided a surface for the compression spring to interact with. The spring pipe is
welded to the center of the base plate. Four % inch holes are located on the base plate, one
near each corner, to allow for bolting the baseplate to a foundation or test containment to
provide extra stability.

B. Spring Pipe
The spring pipe contains the spring and allows for observation of the deflection of the spring
during testing. The spring pipe is a segment of threaded gas pipe with a % inch viewing slot
end-milled into the side of the pipe. The viewing slot should be long enough to observe the
maximum expected deflection of the spring. The expected deflection of the test was
approximately 7 inches, and the viewing slot was only cut to 7 inches from the end of the
pipe instead of the end of the threads. In hindsight, the viewing slot should have been cut
much longer because there was no reason not to.



C. Spring
The spring was placed inside of the spring pipe and was compressed by the plunger. Various
parameters of the prototype spring are listed in Table 5

Table 5: Tabulation of prototype spring parameters

Parameter Value
Outside Diameter 1.470in
Length 16.000 in
Wire Diameter 0.187 in
Stiffness 21.00 lbs./in
Max Load 151.8 lbs.
Max Deflection 7.23in
Pitch 0.397 in

D. Plunger
The plunger transfers the force of impact from the strike plate to the spring. The plunger
connects the strike plate to the spring and interferes with the cap to prevent the plunger
from shooting back out after compression.

The plunger is a machined circular rod with two different diameters. The smaller diameter is
connected to the strike plate and extends out through the cap. The larger diameter rests on
top of the spring and acts as a cylindrical sliding surface that rubs against the inside of the
pipe wall. The larger diameter does not pass through the hole it the cap and prevents the
plunger from leaving the pipe.

The plunger diameter that rubbed against the pipe was machined smaller than it probably
should have been. The reason that it was machined so small was to minimize frictional
forces, however the smaller diameter allowed for greater axial misalignment between the
plunger and pipe which resulted in binding when the load was dropped off center.

E. Pipe Cap
The pipe cap is a standard, internally threaded gas pipe cap with a hole cut in the center to
allow the smaller diameter of the plunger to pass through but not the larger diameter. The
cap also acts as a hard stop against the bottom of the strike plate to prevent over
compression of the spring. The cap is threaded onto the pipe after the plunger is in place.

F. Strike Plate
The strike plate provides a large surface to drop a weight onto. The strike plate transfers the
force of impact to the plunger, which in turn transfers the force of impact to the compression

spring.

The strike plate is a piece of plate steel with a center cut hole that allows a bolt to pass
through and thread into the plunger.



3. Locking Mechanism Prototype
The locking mechanism prototype tests two aspects of the design: the inward ratcheting motion
of the ratchet screw and the ability of the pawl arms to lock the ratchet screw in place under
load. The locking mechanism prototype was designed to test these features without the use of
the prototype spring, for safety concerns.

A.

Base Plate

The base plate provides a surface for the main cylinder to connect to, stabilizes the prototype
during the inward motion tests, and provides a mounting surface for the prototype during
the locking mechanism test.

The base plate is a piece of plate steel with a center cut hole the same size as the main
cylinder inside diameter. The base plate has four smaller holes located around the edges to
attach the base plate to another surface for stability and mounting purposes. The base plate
is welded to the main cylinder, with the center cut hole axially aligned with the main cylinder.

Main Cylinder

The main cylinder provides a mounting location for the pawl arms and provides a cylindrical
sliding surface for the slider block. The main cylinder receives the slider block and ratchet
screw as they both move inward during the inward motion test.

The main cylinder is a gas pipe with mounting holes for the pawl arms to connect to.

Pawl Arms

The locking mechanism prototype was designed to have quarter nuts similar to the full-scale
design eighth nuts, but fabrication challenges at the local machine shop required use of the
previous pawl arms with angled teeth design. The pawl arms deflect upward and out of the
way during inward motion and hold the ratchet screw in place under load.

The pawl arms are made of bar stock and are connected to the main cylinder by nuts and
bolts.

Slider Block

The slider block provides a sliding surface to interact with the main cylinder during inward
motion and acts as a hard stop to prevent the ratchet screw from pulling out of the main
cylinder completely if the pawl arms cannot lock the ratchet screw under load.

The slider block is machined from a piece of round stock to have the same outer diameter as
the main cylinder inside diameter, which should minimize the chance of binding during the
inward motion test. The slider block is a larger diameter than the ratchet screw, and thus
prevents the slider block from passing through the pawl teeth. This prevents the ratchet
screw from completely leaving the main cylinder if the pawl arms cannot lock the ratchet
screw.

Ratchet Screw
The ratchet screw deflects the pawl arms outward during inward motion and is locked in
place by the pawl teeth under load.



The upper end of the ratchet screw is secured to the slider block with a 3/8-16 bolt. The
lower end is attached to either an eyebolt or strike plate with a 1/4-20 threaded fastener.
The reasons for the two different bolt sizes are reuse of spring prototype components and
selective failure. The strike plate from the spring prototype was desired to be used in the
locking prototype, which was designed to be used with a 1/4-20 bolt. It is entirely possible
that either bolt may shear off the ratchet screw, and it was decided that it would be easier to
extract the broken bolt from the lower end than the upper end, because the ratchet screw
will probably be partially threaded into the pawl arms.

F. Slider Block
The slider block provides a sliding surface that connects the ratchet screw to the main
cylinder and prevents the ratchet screw from fully disengaging from the pawl teeth.

The slider block is made from machined round stock is bolted co-axially to the ratchet screw.
The slider block has a larger diameter than the ratchet screw to interfere with the pawl teeth
and prevent ratchet screw disengagement. The slider block is designed to minimize the
chance of binding during the inward motion test and freely slide within the main cylinder.

G. End Attachments
There are two end attachments that serve two separate purposes.

Strike plate
A strike plate is connected to the end of the ratchet screw for the inward motion test.
This plate will provide a larger area to apply the force to move the ratchet screw inward.

The strike plate for the locking mechanism prototype is fundamentally the same as the
strike plate for the spring prototype.

i. Eyebolt
An eyebolt is connected to the end of the ratchet screw for the locking mechanism test.
The weight will be connected the eyebolt to simulate the maximum force that the spring
would create at maximum compression.

They eyebolt is a preformed component and should be able to support at least 150 Ibs.

4. Unlocking Mechanism Prototype
The unlocking mechanism prototype has not been fully designed at the time of writing. The
purpose of the unlocking mechanism prototype is to test that the ratchet screw can be
unthreaded from the pawl arms under load. The unlocking prototype would have essentially the
same components and appearance of the Locking Prototype with the following additions:

A. Motor
The motor is used to unscrew the ratchet screw from the pawl teeth on the pawl arms. The
motor is rigidly mounted inside the motor housing and the motor shaft is connected to the
ratchet screw.



The motor should be able to produce at least 16 Nm of torque. The design of the motor is
outside the scope of this project and a prebuilt motor should be used.

Motor Housing

The motor housing radially fixes the position of the motor, which allows the motor to create
a rotational force between the ratchet screw and the main cylinder. The motor housing of
the real design also transfers the impact energy from the ratchet screw to the main spring,
but that function is not required on this prototype.

The motor housing remains radially fixed by use of keys and keyways on the inside surface of
the main cylinder. The motor housing is attached to the thrust bearing, which allows the
ratchet screw to rotate.

Thrust Bearing

The thrust bearing allows the ratchet screw to rotate while the motor housing remains
radially fixed. In the real design the thrust bearing is used to transfer the force of impact to
the motor housing, but that function is not required on this prototype.

The thrust bearing outer race is connected to the motor housing and remains radially fixed.
The thrust bearing inner race is connected to the ratchet screw and motor shaft and can
rotate relative to the motor housing.

Main Cylinder

The main cylinder is largely unchanged from the locking prototype design, but the inside
surface is keyed in such a way to keep the motor housing from rotating within the main
cylinder.

Ratchet Screw

The ratchet screw is largely unchanged from the locking prototype design, but the upper end
of the ratchet screw is machined in such a way that it can be pressed into the thrust bearing.
The real design ratchet screw would need to have a collar to prevent the ratchet screw from
pushing through the inner race of the thrust bearing, but that function is not required in this
prototype.



V.

Principles of Operation

This section explains how the full-scale design and each of the prototypes is operated.

1. Full Scale Design

The full-scale design operation is purely hypothetical and not all applicable prototype tests have
been performed at the time of writing. The following procedure is a sequential list of expected
interactions between the various components and any steps that need to be taken by the user.

1) The ratchet screw is impacted by a force.

2) The impact force is transferred from the ratchet screw to the thrust bearing, which transfers
the force to the motor housing, which transfers the force to the main spring.

3) The main spring is compressed as the ratchet screw moves inward.

4) A sensor delivers information to the user that the spring has compressed.

5) The angled surface of the ratchet screw helix profile encounters the angled surface of the
pawl teeth.

6) The ratchet screw deflects the end of the pawls outward as the ratchet screw moves inward.

7) The pawl tooth eventually slides over the top of the ratchet tooth that it was in contact with
and falls down into the cavity created behind the ratchet tooth.

8) Steps 4-6 repeat until all the impact energy has been absorbed by the main spring and the
inward movement of the ratchet screw stops.

9) The main spring attempts to expand, which pushes the motor housing, thrust bearing, and
ratchet screw out of the main cylinder.

10) The ratchet screw moves outward until the load bearing face of the helix profile interacts
with the load bearing surface of the pawl tooth. The force of the main spring, acting through
the motor housing, thrust bearing, and ratchet screw, is now held completely by the pawl
arms.

11) The sensor notifies the user that the spring is fully compressed.

12) At this point all the impact energy is stored in the main spring. The system can remain in this
state indefinitely. The rest of the procedure must be performed before the shock absorber is
ready to be used again.

13) To unload the main spring the user must activate the motor.

14) The motor creates a twisting force between the main cylinder and the thrust bearing, which
turns rotates the ratchet screw.

15) The ratchet screw is unthreaded from the pawl teeth until the main spring is completely
decompressed.

16) The user deactivates the motor, the sensor shows that the spring is not compressed, and the
system is ready for use again.

Spring Prototype

The spring prototype is designed to test the main spring component of the design. The spring
should not fail under the load resulting from an impact force or compress far enough that the
strike plate bottoms out. The following procedure is a sequential list of expected interactions
between the various components and any steps that need to be taken by the user.



1) The base plate is fastened to a surface to provide stability. A 55-gallon steel drum provides
stability and prevents the weights from sliding off the strike plate after the drop.

2) Adisplacement measurement system is established. Paper rulers can be taped near the
viewing slot on the spring pipe. Slow motion video capture can be used to analyze each
drop test afterwards.

3) The strike plate is impacted by a 90lb weight that is dropped from a fixed height of 6
inches. This produces the dynamically scaled impact energy expected during a worst-case
scenario lunar landing. The scaled impact energy is 63 Joules.

4) The stroke length is recorded, preferably with slow motion video capture. The stroke
length is the max distance the plunger travels before reversing direction from the spring’s
opposing force.

5) Multiple weight drops should be performed to collect a list of data.

6) The spring will be determined fit or unfit for the design based on the stroke length.

3. Locking Mechanism Prototype
The locking mechanism prototype is tested in two ways. The first is a ratcheting motion test,
which tests that the ratchet screw deflects the pawls outward as designed. The second is a
locking mechanism test, which tests whether the locking mechanism will be able to hold the
spring/ratchet helix in place when it has all the energy stored from the landing.

A. Ratcheting Motion Test
1) The eyebolt is removed from the ratchet screw and the strike plate is inserted.
2) The locking mechanism prototype is mounted in such a way that the strike plate can be
impacted.
3) The ratchet screw is positioned such that most or all of the ratchet screw is extended out
through the pawl arms.
4) Impact the strike plate by dropping 90lbs. from a height of 6 inches onto

B. Locking Mechanism Test

1) The strike plate is removed from the ratchet screw and the eye bolt is inserted.

2) The locking mechanism prototype is mounted in such a way that the weight, 144 lbs., can
safely be hung from the eyebolt.

3) The ratchet screw is positioned such that at least half of the ratchet screw is inside of the
main cylinder.

4) The weight is hung from the eyebolt and any movements are noted. The weight should
be hung for enough time to note any slow changes or deformations. The ratchet screw
may slowly unscrew under load. If this occurs the speed of the rotation should be noted,
and calculations should be performed to determine if the rotation would pose a threat to
the safety of the landing craft on the full-size design.

5) Remove the weight from the eyebolt.

4. Unlocking Mechanism Prototype

The unlocking mechanism prototype is designed to test the ability of the ratchet screw to
unthread under maximum loading.



3)
4)
5)

The prototype is mounted in such a way that the proper amount of weight, 144lbs, can be
hung from the eyebolt on the ratchet screw.

The ratchet screw is positioned in the pawl teeth such that half of the ratchet screw is
within the main cylinder.

The weight is attached to the eyebolt.

The motor is activated to unthread the ratchet screw through the pawl teeth.

When the screw is fully unthreaded and the slider block is interfering with the pawl teeth,
turn off the motor and remove the weight from the eyebolt.



V. Appendix A: Problem Supplements

Shock Absorber
! !

Support Impact Reduction Reusability
Absorb Support Absorb Impact Returns to Indicate
Shock Mass Energy original state Reusability

]
L )
Dampen Transform
Vibrations Energy
Prevent Excessive Dissipate Store
Rebound Energy Energy

Figure A-1: The functional decomposition with critical functions highlighted in yellow.




VI. Appendix B: Drawings
This appendix contains the drawings of the full-scale design, the spring prototype, and the locking
mechanism prototype. The unlocking mechanism prototype has not been designed yet at the time
of writing.
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